POLINOMLARDA Bölme İşlemi Yapmadan Kalan Bulma

Polinomlarda Bölme İşlemi Yapmadan Kalan Bulma

Bir P(x) Polinomunun x – a ile Bölünmesinde Elde Edilen Kalan
Bir P(x) polinomunun (x – a) ile bölünmesinden elde edilecek bölüm Q(x) ve kalan k olsun. (x – a) birinci dereceden olduğundan, kalan sabit bir sayıdır. P(x) = (x – a) Q (x) + k eşitliği her x için geçerlidir. Burada, x yerine a yazarsak P(a) = 0.Q(a) + k  P(a) = k bulunur.

Bir P(x) polinomunun (x – a) ile bölünmesinden elde edilen kalan P(x) ya eşittir. O halde, bir polinomun (x – a) ile bölünmesinden kalanı bulmak için (x – a = 0  x = a olur.) polinomda x yerine a değeri yazılır.

Örnek
P(x) = x2 – 3x + 21 polinomunun (x – 2) ile bölünmesinden elde edilen kalanı bulunuz.

Çözüm
X – 2 = 0  x = 2 dir. Bulacağımız kalan P(2) olacaktır. Öyleyse, P(2) = 22 – 3 . 2 + 21 = 19 olur.

Bir P(x) Polinomunun ax + b ile Bölünmesinden Elde Edilen Kalan
Bölen birinci dereceden olduğundan kalan yine sabit olur. Bölen olarak (ax + b) polinomunu alalım. Bu durumda P(x) = (ax + b) Q (x) + k yazılır.
Ax + b = 0  x = olur. Polinomda x yerine yazılırsa P( ) = k bulunur. O halde, bir P(x) polinomunun (ax + b) ile bölünmesinden kalanı bulmak için polinomda x yerine yazılır.

Örnek
P(x) = x3 – 4x + 1 polinomunun 2x – 1 ile bölünmesinden kalanı bulunuz.

Çözüm
P ( ) = – 4. + 1 = – 2 + 1 = olur.

Bir P(x) Polinomunun x2 + a, x3 + a, x4 + a ile Bölünmesinden Elde Edilen Kalan
P(x) polinomunun x2 + a ile bölünmesinden elde edilen kalanı bulmak için polinomda x2 yerine –a yazılır.
P(x) polinomunun x3 + a ile bölünmesinden elde edilen kalanı bulmak için polinomda x3 yerine –a yazılır.
P(x) polinomunun x4 + a ile bölünmesinden elde edilen kalanı bulmak için polinomda x4 yerine –a yazılır.

Örnek
P(x) = x4 – x3 + x2 + 7x –1 polinomunun, x2 + 2 ile bölünmesinden kalanı bulunuz.

Çözüm
İstenen kalanı bulmak için (x2 + 2 = 0  x2 = -2) polinomda x2 yerine –2 yazarız.
P(x) = x2 . x2 – x2 . x + x2 + 7x – 1 olur.
Kalan : (-2) ( -2) – (-2) . x – 2 + 7x – 1 = 4 + 2x + 7x – 3 = 9x + 1 bulunur.

Bir Polinomun (x – a) (x – b) ile Bölünmesinden Elde Edilen Bölüm ve Kalan
Bir P(x) polinomunun (x – a) . (x – b) ile bölünmesini Horner yöntemi ile yapabiliriz. Verilen P(x) polinomu önce (x – a) ile bölünür, sonra elde edilen bölüm (x – b) ile bölünür.

Örnek
Bir P(x) polinomunun (x + 3) (x – 2) ile bölünmesinden kalanı bulunuz.

Çözüm
(x + 3) (x – 2) polinomu 2. dereceden olduğuna göre, kalan polinom en fazla 1. derecedendir. Kalan polinom K(x) = ax + b biçimindedir. Bölüm özdeşliği yazılırsa,
P(x) = (x + 3) (x – 2) B(x) + ax + b biçiminde olur.
P(-3) = -5 ve P(2) = 4 olduğu veriliyor.
P(-3) = (-3 + 3) (-3 –2) . B (-3) –3a +b  P(-3) = -3a + b
P(2) = (2 + 3) (2 – 2) . B(2) + ‘a +b  P(2) = 2a +b olur.

-3a + b = -5
2a + b = 4
denklem sistemi çözülürse, a = ve b = olur. Buradan, K(x) = x + bulunur.

Örnek
Bir P(x) polinomunun x2 + 2 ile bölünmesinden kalan –2x + 6 ve P(x) polinomunun kat sayıları toplamı 7 ise bu P(x) polinomunun (x2 + 2) (x – 1) ile bölünmesinden kalanı bulunuz.

Çözüm
Bir P(x) polinomunun kat sayıları toplamını bulmak için polinomda x yerine 1 yazılır. P(1) verilen polinomun kat sayıları toplamıdır. Burada, P(1) = 7 veriliyor. Diğer taraftan kalan, en fazla 2. dereceden ax2 + bx + c biçiminde olur. Bölmenin özdeşliği yazılırsa;
P(x) = (x2 + 2) (x – 1) b(x) + ax2 + bx + c olur. Polinomda,
x = 1 için P(19 = (1 + 2) . (1 – 1) . B(1) + a + b + c = a + b + c = 7 ve
x2 = -2 yazılırsa, -2a + bx + c = – 2x + 6 olur.
bx + c – 2a = -2x + 6  b = -2 ve c-2a = 6 olur. Ayrıca, b = -2 ise a + b + c = 7 den
a – 2 + c = 7  a + c = 9 dur.
c – 2a = 6
a + c = 9
Sistemi çözülürse, a = 1, c = 8 bulunur. Oyleyse, K(x) = x2 – 2x + 8 olur.

5 thoughts on “POLINOMLARDA Bölme İşlemi Yapmadan Kalan Bulma

  1. K@R!ZM@

    çokkkk ii bir site yapmıssınızzzzz sağolunnnn :::::::::::::))))))))))

    Reply

Bir Cevap Yazın

E-posta hesabınız yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir